LCA of Hydroelectric Generation in Fljótsdalur Hydropower Station

NorLCA Symposium, September 16th 2011 Gyða Ingólfsdóttir, EFLA Consulting Engineers

AIM OF THE STUDY & FUNCTIONAL UNIT

Aim:

- Calculate environmental impacts associated with electric power generation in Fljótsdalur Hydropower Station
- To provide transparent and reliable information on the environmental impacts of the hydroelectric power generation

Functional unit:

 1 kWh electricity generated in Fljótsdalur Hydropower Station in Eastern Iceland

ELECTRIC POWER GENERATION IN ICELAND

KÁRAHNJÚKAR HYDROELECTRIC PROJECT

Héraðsflói Húsavík Krafla Egilsstaði Fjarðaál Jökulsá á Dal **Powerstation** Reyðarfjörðu Fljótsdalur, Hafrahvammagljúfur Jisa Hilling Hálslón Ufsarlón reservoir reservoir Snæfell Kelduárlón reservoir Brúarjökull Eyjabakka glacier glacier Vatnajökull glacier **Construction: 2003 – 2009**

Generating capacity: 4,950 GWh/yr

SYSTEM BOUNDARIES

TUNNEL BORING MACHINE

ENVIRONMENTAL IMPACTS CATEGORIES

- Global Warming Potential
- Acidification Potential
- Ozone Layer Depletion Potential
- Eutrophication Potential
- Photochemical Ozone Creation Potential
- Abiotic Depletion (elements and fossil)
- Freshwater Aquatic Toxicity
- Human Toxicity Potential
- Terrestric Ecotoxicity Potential

RESULTS - GWP

EMISSIONS FROM RESERVOIRS

 Calculations of CO₂ and CH₄ emissions based on studies conducted by the Agricultural University of Iceland (AUI)

- Basis for calculations:
 - 1. Amount of C in inundated land known
 - 2. 10% GHG released as CH_4 and 90% as CO_2

RESULTS - AP

Acidification Potential: $5.7 \text{ mg SO}_2 \text{ eq./kWh}$

CONCLUSIONS

- GHG emissions from reservoirs cause significant part of the environmental effects in terms of GWP
- Burning of fossil fuels and production of cement for the construction phase are the major cause for other negative environmental impacts.

